Rationality of forms of $M_{0, n}$
 UCLA Birational Geometry Seminar 2024

Brendan Hassett
in collaboration with Yuri Tschinkel and Zhijia Zhang

Department of Mathematics and ICERM, Brown University
supported by the National Science Foundation and the Simons Foundation

March 29, 2024

Geometric background

The moduli spaces

$M_{0, n}$ moduli space of n-pointed curves of genus 0 , i.e., $\left(\mathbb{P}^{1}, p_{1}, \ldots, p_{n}\right)$ where the $p_{i} \in \mathbb{P}^{1}$ are distinct, up to projective equivalence
$\bar{M}_{0, n} \supset M_{0, n}$ compactification by stable curves (C, p_{1}, \ldots, p_{n}) where C is a nodal tree of \mathbb{P}^{1} 's and the p_{i} are distinct smooth points. Stability means that each irreducible component has ≥ 3 distinguished points i.e. $\omega_{C}\left(p_{1}+\cdots+p_{n}\right)$ is ample

Group actions

\mathfrak{S}_{n} symmetric group on $\{1,2, \ldots, n\}$
This acts on the moduli spaces

$$
\begin{aligned}
& \mathfrak{S}_{n} \times M_{0, n} \longrightarrow M_{0, n} \\
& \sigma \cdot\left(\mathbb{P}^{1}, p_{1}, \ldots, p_{n}\right) \mapsto \\
&\left(\mathbb{P}^{1}, p_{\sigma(1)}, \ldots, p_{\sigma(n)}\right)
\end{aligned}
$$

giving

$$
\mathfrak{S}_{n} \hookrightarrow \operatorname{Aut}\left(\bar{M}_{0, n}\right) .
$$

Bruno and Mella prove equality for $n \geq 5$; Royden has similar results for $M_{0, n}$.

Rationality

$M_{0, n}$ is rational but the constructions break symmetry:
Keel construction: There is a unique $\phi: \mathbb{P}^{1} \xrightarrow{\sim} \mathbb{P}^{1}$ with

$$
\phi\left(p_{1}\right)=[1,0], \phi\left(p_{2}\right)=[0,1], \phi\left(p_{3}\right)=[1,1] .
$$

This induces a birational morphism

$$
\begin{aligned}
\beta_{123}: M_{0, n} & \longrightarrow\left(\mathbb{P}^{1}\right)^{n-3} \\
\left(\mathbb{P}^{1}, p_{1}, \ldots, p_{n}\right) & \mapsto\left(\phi\left(p_{4}\right), \ldots, \phi\left(p_{n}\right)\right)
\end{aligned}
$$

extending naturally to $\bar{M}_{0, n}$. For instance,

$$
\bar{M}_{0,4} \simeq \mathbb{P}^{1}, \quad \bar{M}_{0,5} \simeq \mathrm{Bl}_{\text {three points }}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)
$$

Losev-Manin construction: Choosing any ϕ with $\phi\left(p_{1}\right)=[1,0]$ and $\phi\left(p_{2}\right)=[0,1]$ induces

$$
\begin{aligned}
\beta_{12}^{\prime}: M_{0, n} & \longrightarrow\left(\mathbb{P}^{1}\right)^{n-2} / \mathbb{G}_{m} \\
\left(\mathbb{P}^{1}, p_{1}, \ldots, p_{n}\right) & \mapsto
\end{aligned}\left(\phi\left(p_{3}\right), \ldots, \phi\left(p_{n}\right)\right) / \text { scaling }
$$

where the multiplicative group acts diagonally on the factors fixing $[1,0]$ and $[0,1]$. This yields toric models of the moduli space.

Kapranov construction: Suppose we have only a single point p_{1}. Kapranov describes an explicit blowup

$$
\beta_{1}^{\prime \prime}: \bar{M}_{0, n} \rightarrow \mathbb{P}^{n-3}
$$

with center supported in linear subspaces spanned by

$$
p_{2}=[1,0, \ldots, 0], \cdots, p_{n-1}=[0, \ldots, 0,1], p_{n}=[1, \ldots, 1] \in \mathbb{P}^{n-3}
$$

Indeed, take the linear series

$$
\left|\omega_{C}\left(p_{2}+\cdots+p_{n}\right)\right|: C \rightarrow \mathbb{P}^{n-3}
$$

and move the marked points to the prescribed locations. For instance,

$$
\bar{M}_{0,4} \simeq \mathbb{P}^{1}, \quad \bar{M}_{0,5} \simeq \mathrm{Bl}_{\text {four points }}\left(\mathbb{P}^{2}\right)
$$

Equivariance

The Keel construction is compatible with actions of

$$
\mathfrak{S}_{3} \times \mathfrak{S}_{n-3} \subset \mathfrak{S}_{n} .
$$

The Losev-Manin construction is compatible with

$$
\mathfrak{S}_{2} \times \mathfrak{S}_{n-3} \subset \mathfrak{S}_{n}
$$

The Kapranov construction with

$$
\mathfrak{S}_{n-1} \subset \mathfrak{S}_{n}
$$

When multiple constructions apply they induce Cremona transformations, e.g., the Kapranov constructions

$$
\mathbb{P}^{2} \stackrel{\beta_{1}^{\prime \prime}}{\longleftarrow} \bar{M}_{0,5} \xrightarrow{\beta_{2}^{\prime \prime}} \mathbb{P}^{2}
$$

give a birational morphism

$$
\bar{M}_{0,5} \rightarrow \operatorname{Graph}\left(\beta_{2}^{\prime \prime} \circ\left(\beta_{1}^{\prime \prime}\right)^{-1}\right)
$$

to a toric variety realizing the Losev-Manin morphism

$$
\beta_{12}^{\prime}: \bar{M}_{0,5} \rightarrow\left(\mathbb{P}^{1}\right)^{4} / \mathbb{G}_{m}
$$

Gelfand-MacPherson correspondence

One final construction with \mathfrak{S}_{n} equivariance: Consider $\operatorname{Mat}(2, n)$ the $2 \times n$ matrices. Let GL_{2} act from the left and \mathbb{G}_{m}^{n} act from the right via diagonal matrices:

$$
\left(\begin{array}{ll}
\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}
\end{array}\right)\left(\begin{array}{lll}
x_{11} & \cdots & x_{1 n} \\
x_{21} & \cdots & x_{2 n}
\end{array}\right)\left(\begin{array}{ccc}
t_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & t_{n}
\end{array}\right) .
$$

We have

$$
\mathrm{PGL}_{2} \backslash\left(\mathbb{P}^{1}\right)^{n}=\mathrm{GL}_{2} \backslash \operatorname{Mat}(2, n) / \mathbb{G}_{m}^{n}=\operatorname{Gr}(2, n) / T
$$

where $T=\mathbb{G}_{m}^{n} / \mathbb{G}$. Depending on how you interpret the quotient operations, one obtains $\bar{M}_{0, n}$ or other models of $M_{0, n}$.

Guiding problems

Galois formulation

Fix k a field and $\rho: \operatorname{Gal}(k) \rightarrow \mathfrak{S}_{n}$ a representation. Realizing $\mathfrak{S}_{n} \subset \operatorname{Aut}\left(\bar{M}_{0, n}\right)$ we get a twisted form ${ }^{\rho} \bar{M}_{0, n}$ defined over k. This is the moduli space of pairs (C, Z) consisting of a reduced cycle of n points on a genus zero nodal curve, all defined over k, where the Galois group acts on the points via ρ.

Question
When is ${ }^{\rho} \bar{M}_{0, n}$ rational or stably rational over k ?
Recall that a variety X is rational if there is birational $\mathbb{P}^{d} \xrightarrow{\sim} X$ over k. It is stably rational if $X \times \mathbb{P}^{r}$ is rational for some r.

An explicit example

Let Z have length four, i.e., is the spectrum of an étale algebra of length four over k. Embed

$$
Z \subset \mathbb{P}_{k}^{2}
$$

as a set in general position using the trace-free elements. Then ${ }^{\rho} \bar{M}_{0,4}$ parametrizes the pencil of conic plane curves

$$
Z \subset C \subset \mathbb{P}^{2}
$$

It is isomorphic to \mathbb{P}^{1} over k.

Another example

${ }^{\rho} \bar{M}_{0,5}$ is a quintic del Pezzo surface, all of which are shown to be rational by Enriques and Swinnerton-Dyer (and Skorobogatov).

Proof: The Gelfand-MacPherson correspondence gives

$$
{ }^{\rho} \bar{M}_{0,5}=\operatorname{Gr}(2,5) / T_{\rho}
$$

where the torus is non-split

$$
1 \rightarrow \mathbb{G}_{m} \rightarrow \rho \text { permutation torus } \rightarrow T_{\rho} \rightarrow 1
$$

Pick a suitable three-dimensional subspace $V \subset k^{5}$. The induced

$$
\mathbb{P}^{2} \simeq \operatorname{Gr}(2, V) \rightarrow \operatorname{Gr}(2,5) / T_{\rho}
$$

is birational! The quickest way to see this is by computing

$$
\left[T_{\rho} \cdot L\right] \in \mathrm{H}^{*}(\operatorname{Gr}(2,5), \mathbb{Z}), \quad L \in \operatorname{Gr}(2,5) \text { generic. }
$$

Equivariant formulation

Let $G \subset \mathfrak{S}_{n}$ be a subgroup and consider $\bar{M}_{0, n}$ as a G-variety. Is this linearizable or stably linearizable?

Recall a G-variety X is linearizable if it is equivariantly birational to a linear G-representation or perhaps the projectivization of such a representation. It is stably linearizable if it becomes linearizable on taking products with such a representation.

Linearizability is the equivariant analog of rationality over non-closed fields.

Examples

For all $G \subset \mathfrak{S}_{4}, \bar{M}_{0,4}$ is linearizable by the proof sketched above.
However, the \mathfrak{S}_{5} action on $\bar{M}_{0,5}$ is not linearizable as \mathfrak{S}_{5} lacks the required representations of small dimension. However, the argument sketched above proves it is stably linearizable.

For simplicity, we focus on the Galois-theoretic results for the rest of this talk.

Prior work

Florence and Reichstein have important results that were the point of departure for our work:

Assume k is infinite and take $X={ }^{\rho} \bar{M}_{0, n}$ a twisted form over k.

- $X(k) \neq \emptyset$ and X is unirational over k;
- for odd n, X is always rational over k;
- for even $n \geq 6$ and suitable k, there are examples of non-rational X.
For the last result, they require that $\mu_{4} \subset k$ and $\operatorname{Br}(k)[2] \neq \emptyset$. They consider moduli of pairs (C, Z) where C is a non-split conic associated with the Brauer class.

Our results

Let k be an arbitrary field - finite or infinite - and $\rho: \operatorname{Gal}(k) \rightarrow \mathfrak{S}_{n}$ a representation. Let $X={ }^{\rho}\left(\bar{M}_{0, n}\right)$ be the associated twisted form.

Theorem
If ρ factors through \mathfrak{S}_{n-1} then X is rational over k, via the Kapranov construction.
If ρ factors through $\mathfrak{S}_{n-3} \times \mathfrak{S}_{3}$ then X is rational over k, via the Keel construction. If ρ has an odd orbit then X is stably rational over k.

If ρ factors through $\mathfrak{S}_{n-2} \times \mathfrak{S}_{2}$ then X is birationally toric over k, for an explicit non-split torus derived from ρ, via the Losev-Manin construction. There is an explicit criterion, in terms of Galois cohomology, for when X is stably rational.

Using the last construction and the obstruction to rationality $H^{1}(\operatorname{Gal}(k), \operatorname{Pic}(X))$, we obtain
Theorem
Suppose that k admits a bi-quadratic extension. For each even $n \geq 6$ there exists a form X of $\bar{M}_{0, n}$ that is not rational over k. The simplest example is when the Galois action is via

$$
G=\langle(12)(56),(34)(56)\rangle .
$$

This applies in cases where $\operatorname{Br}(k)=0$ e.g., function fields of complex curves have trivial Brauer group and admit biquadratic extensions.

Building on contributions of Cheltsov, we find
Theorem
A twisted form X of $\bar{M}_{0,6}$ is rational if and only if the action factors through

- the $\mathfrak{S}_{5} \subset \mathfrak{S}_{6}$ fixing an element;
- an index-ten subgroup leaving a partition $\{1,2,3,4,5,6\}=\{p, q, r\} \cup\{a, b, c\}$ invariant;
- a Klein four group conjugate to $\langle(34),(12)(56)\rangle$.

This includes all stably rational examples.

The rationality constructions are most transparent using the Segre threefold model of X, i.e., as a cubic threefold with ten nodes.

Using the Gelfand-MacPherson construction, Schubert calculus (Klyachko's formula for the classes of orbits closures), and some combinatorial analysis, we obtain

Theorem
Let k be an arbitrary field and X a twisted form of $\bar{M}_{0, n}$ over k. If n is odd then X is rational over k.

The main challenge is to produce suitable subspace $V \subset k^{n}$ such that the induced

$$
\operatorname{Gr}(2, V) \nrightarrow{ }^{\rho} \bar{M}_{0, n}
$$

has the degree predicted from intersection theory.

Using arguments via restriction of scalars and forgetting maps

$$
\bar{M}_{0,2 m} \rightarrow \bar{M}_{0, m} \times \bar{M}_{0, m}
$$

we find
Theorem
Let $n=2 m$ with m odd and assume that ρ factors through

$$
A \times \mathfrak{S}_{2} \subset A \imath \mathfrak{S}_{2} \subset \mathfrak{S}_{2 m},
$$

for some $A \subset \mathfrak{S}_{m}$. Suppose that X is a twisted form of $\bar{M}_{0,2 m}$ associated with ρ. Then X is rational.
In particular, forms for the cyclic group $C_{2 m} \subset \mathfrak{S}_{2 m}$ and forms defined over \mathbb{R} are rational.

Questions

Are all twisted forms arising from cyclic extensions rational?

Are there any non-rational stably rational twisted forms?
Does the existence of an odd orbit guarantee rationality?

